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We present some preliminary results from using large-eddy simulation to compute the
late wake of a sphere towed at constant speed through a non-stratified and a uniformly
stratified fluid. The wake is computed in each case for two values of the Reynolds
number: Re = 104, which is comparable to that used in laboratory experiments, and
Re = 105. An important aspect of the simulation is the use of an iterative procedure
to relax the initial turbulence field so that the normal and shear turbulent stresses are
properly correlated and the turbulent production and dissipation are in equilibrium.
For the lower Reynolds number our results compare well with existing laboratory
experimental results. For the higher Reynolds number we find that even though the
turbulence is more developed and the wake contains finer structure, most of the
similarity properties of the wake are unchanged compared with those observed at the
lower Reynolds number.

1. Introduction
Laboratory experiments on the evolution of the turbulent wake generated by a

body towed through a stratified fluid have shown that, if the stratification is not
too strong, the evolution of the wake can be divided into three phases: a near-wake
phase, a transition phase and a far-wake phase. In the near-wake phase the wake
spreads uniformly in all three dimensions and the turbulence behaves as it does for
a similar wake in a homogeneous fluid. At some point downstream the wake has
expanded sufficiently far vertically so that buoyancy effects become important and
the wake begins to collapse vertically as it continues to spread horizontally. This is
the beginning of the transition phase in which much of the turbulent kinetic energy
that has been converted to potential energy in the near wake is converted back to
kinetic energy. Finally, further downstream, the vertical motion in the wake diminishes
to nearly zero. This is the beginning of the far-wake phase, which is characterized
by horizontally large and vertically relatively thin eddy-like dipole structures, often
referred to by the descriptive name of ‘pancake eddies’, that persist for very long
distances downstream.

The near-wake phase has been well-studied in the laboratory for a sphere towed
through a uniformly stratified fluid, for Re 6 104 and Fr 6 20, where the Reynolds
number Re = UD/ν and the Froude number Fr = U/ND, in which U is the tow
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speed, D is the diameter of the sphere and N is the buoyancy frequency. The studies
of Lin et al. (1992b), Lin, Boyer & Fernando (1992a, 1994), Chomaz et al. (1992) and
Chomaz, Bonneton & Hopfinger (1993b) show that the turbulence properties of the
near wake are highly dependent on the values of Re and Fr .

At the beginning of the transition phase the vertical growth of the wake stops
and the decay rates of the turbulence quantities abruptly change. This wake collapse
period was first defined by Schooley & Stewart (1963), and is discussed in greater
detail in Lin et al. (1992b), Spedding, Browand & Fincham (1996a, b), Spedding (1997),
Bonnier, Eiff & Bonneton (2000) and Spedding (2001). Spedding (1997) refers to this
period as an adjustment, or non-equilibrium (NEQ), period in which the conversion
of potential energy to kinetic energy reduces the decay rates of the turbulent kinetic
energy.

The final, or far-wake, phase of the wake evolution is characterized by very
persistent slowly evolving thin eddy dipole structures. Early, primarily qualitative,
studies of these far-wake features are reported by Pao & Kao (1977), Kao & Pao
(1978) and Lin & Pao (1979). More extensive visualization studies are reported
by Hopfinger (1987), Sysoeva & Chashechkin (1991) and Chomaz et al. (1993a, b).
Quantitative studies of the vorticity structure of the far wake are reported in Spedding
et al. (1996a, b) and Spedding (1997, 2001). The vertical velocity and density structure
of these late-wake vortices is investigated by Bonnier, Bonneton & Eiff (1998), Bonnier
et al. (2000) and Spedding (2002). Based on their experimental results, Bonnier et al.
(1998, 2000) propose a three-dimensional model for the quasi-equilibrium structures
that exist in the far wake. Numerical studies of the far wake in a stratified fluid
include the Reynolds-averaged hydrostatic simulations using a simple Smagorinsky
turbulence closure model described in Fung & Chang (1996) and the direct numerical
simulations (DNS) reported in Gourlay et al. (2001). A review of the main features
of the late stratified wake is given by Riley & Lelong (2000).

At large Re and Fr, the precise nature of the mechanism responsible for the
formation of the far-wake eddies is still not understood. It has been speculated, Pao
& Kao (1977), that these could be due to the helical vortex shed by the sphere that
persist into the far wake. Spedding (2001) concludes from his experimental results
that a combination of the Kelvin–Helmholtz instability and spiral mode instabilities
can account for the observed wavelengths in the late wake. On the other hand, the
experiments of Bonnier et al. (1998), among others, show that the late-wake eddies
appear whether a helical vortex exists in the near wake or not, so it seems that a
helical vortex is not required for their existence. Also, the numerical simulations of
Dommermuth et al. (2000) and Gourlay et al. (2001) indicate that even completely
incoherent turbulence in the near wake with no imbedded features at all still gives rise
to late-wake eddy structure. The other major theory of the mechanism responsible
for the formation of the late-wake eddies is that they develop from some instability
of the mean wake flow that is reinforced by the stable stratification. This idea is
favoured by Fung & Chang (1996), although their calculations can be interpreted as
indicating that the late-wake eddies are produced by coherent structures introduced
through the initial conditions.

In this paper we develop a numerical procedure intended for the simulation of
the far wake and the transition to the far wake. In particular we are interested in
how the late wakes are affected if the Reynolds number is much higher than has
been obtained in the laboratory studies. We report four numerical experiments: the
first is an attempt to simulate the formation of eddies in the late wake due to a
turbulent flow for the stratified case with Fr = 2, the smallest value of Fr for which
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there is a transition phase, and Re = 104, the largest value of Re for which laboratory
experiments have been performed. The second is similar to the first except that the
fluid is non-stratified (Fr = ∞). The last two numerical experiments are similar to the
first two, except the Reynolds number is higher (Re = 105). This latter value of Re is
higher than has been obtained so far in laboratory experiments.

The numerical method is large-eddy simulation (LES). Our interest is in resolving
the large-scale turbulent eddies so that we can gain insight into how these develop into
the large-scale, quasi-two-dimensional vortex structures that are observed in the far
wake. Also, we are interested in how individual eddies interact with the background
stratification to generate the random internal waves first observed in the experiments
of Gilreath & Brandt (1985). A Reynolds-averaged model, such as that used by Fung
& Chang (1996) or the EDQNM model used by Staquet & Godeferd (1998) may be
adequate for the late wake but will not provide the detailed eddy structure we seek in
the intermediate wake regime. LES gives sufficient detail to provide insight into the
mechanisms that lead to the end of the transition phase and that develop into the
far-wake eddies, yet can still handle higher values of Re than has been achieved in the
experiments. The flow is initialized with a mean deficit wake flow with a superimposed
homogeneous turbulent flow field. A relaxation procedure is introduced to obtain the
proper initial conditions for all the turbulence quantities before the calculation is
begun. This relaxation procedure proved to be important, for without it the onset
times of the different similarity phases of the wake were not properly simulated.

In this paper we focus on the velocity structure of the far wake. There is no
coherent structure imposed on the turbulence other than the gross characteristics of
the mean wake flow. Our results show that coherent vortices appear in the late wake
even though the flow is initialized without any coherent structures. The results of
these numerical simulations at the lower Re compare very well with the late-wake
experimental results of towed spheres, even though only the mean flow characteristics
are matched in the near field. For the higher Reynolds number we find that even
though the turbulence is more developed and the wake contains finer structure, most
of the similarity properties of the wake are unchanged compared with those observed
at the lower Reynolds number.

2. Problem formulation
A schematic drawing of the flow under consideration is shown in figure 1 in a

reference frame in which the sphere is at rest. This figure serves to define much of the
nomenclature used here. The wake behind the sphere is considered to be statistically
stationary. Since the entire wake is too long to compute as a whole, we make the
approximation that the flow can be computed within a rectangular box, with axial
dimensions much smaller than the total length of the wake, that moves with the
mean flow speed U. Within this box the flow is computed using large-eddy simulation
(LES).

2.1. Large-eddy formulation of the Boussinesq equations

We assume that the fluid is incompressible and in the undisturbed state is ho-
mogeneous in the horizontal and uniformly stratified in the vertical. A large-eddy
approximation is invoked whereby the large-scale features of the flow are resolved and
the small scales are modelled. Let ui (i = 1, 2, 3) denote the three-dimensional velocity
field as a function of space xi and time t. The origin of the coordinate system is at the
centroid of the sphere, as shown in figure 1; x1 is positive upstream, x2 is transverse
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Figure 1. A schematic diagram of the sphere and the coordinate system in a reference frame in
which the sphere is at rest. The dashed box denotes the slab of fluid that is modelled using LES.
〈ū1〉 is the wake deficit.

to the track of the sphere, and x3 is positive upward. The length and velocity scales
of the flow are respectively normalized by the diameter of the sphere, D, and the
free-stream velocity, U. The governing non-dimensional parameters for this flow are
the Reynolds number Re = UD/ν, the Schmidt number Sc = ν/κ and the Froude
number Fr = U/(ND), where ν is the kinematic viscosity of the fluid, κ is the diffu-
sivity of the scalar in the fluid that changes its density and N = [(−g/ρo)∂%/∂x3]

1/2

is the buoyancy (or Brunt–Väisälä) frequency in which g is the acceleration due to
gravity, ρo is the mean density, and ∂%/∂x3 is the vertical derivative of the background
mean density (assumed to be a constant).

The large-scale features of the flow are determined by applying a spatial filter to
the equations of motion. We used a top-hat (or box) filter with width equal to the
grid spacing. The filtered equation of continuity is

∂ūi

∂xi
= 0, (2.1)

where the overbar denotes spatial filtering.
The density equation is

∂ρ̄

∂t
+
∂ūjρ̄

∂xj
− ū3 =

1

Re Sc

∂2ρ̄

∂xj∂xj
− ∂θj

∂xj
, (2.2)

where ρ̄ is the perturbation density, which is normalized by the incremental change
in background density over the diameter of the sphere, −D∂%/∂x3. The residual flux
of density is

θj = ujρ− ūj ρ̄. (2.3)

The filtered momentum conservation equations for a weakly stratified fluid are

∂ūi

∂t
+
∂ūj ūi

∂xj
= − ∂p̄

∂xi
+

1

Re

∂

∂xj

(
2µS̄ij

)− δi3 ρ̄

Fr2
− ∂τij

∂xj
, (2.4)
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where p is the dynamic pressure, which is normalized by ρoU
2, and µ(ρ) is a constitutive

relation between the viscosity and the density of the fluid. Here, we assume µ(ρ) = 1.
S̄ ij is the filtered strain tensor:

S̄ ij =
1

2

(
∂ūi

∂xj
+
∂ūj

∂xi

)
. (2.5)

τij is the subgrid-scale (SGS) stress tensor:

τij = ujui − ūj ūi. (2.6)

A mixed model (Bardina, Ferziger & Reynolds 1984) is used to model the SGS
stress tensor. The mixed model was chosen as it is a first step towards implementing
a dynamic SGS model, such as the one described by Germano et al. (1991). For the
mixed model the SGS stress tensor is modelled as

τij =
(
ūj ūi − ūj ūi

)− cs∆2|S̄|S̄ ij , (2.7)

The first term, in parentheses, on the right-hand side of (2.7) is the similarity portion
of the mixed model. It provides an accurate representation of the turbulent stresses.
The remaining term on the right-hand side is the Smagorinsky portion of the mixed
model. It represents dissipation. Also, cs is the Smagorinsky coefficient and ∆ is the
width of the spatial filter, which as mentioned earlier we set equal to the grid spacing.
The magnitude of the strain tensor is defined

|S̄| =
√
S̄ ij S̄ ij . (2.8)

The corresponding model for the residual density flux combines a similarity model
with an eddy diffusivity model:

θj =
(
ūj ρ̄− ¯̄uj ¯̄ρ

)− cθ∆2|S̄| ∂ρ̄
∂xj

, (2.9)

where cθ is the eddy diffusivity constant. The values of the turbulence coefficients
used herein are cs = cθ = 0.075, which have been chosen such that the relaxation
procedure described below gives the best approximation to the Fr = ∞ laboratory
data at x1 = −6. Studies completed since these calculations were performed indicate
that these coefficients should be smaller. In the high Reynolds number (Re = 105)
runs, the molecular viscosity term contributed only 6% of the momentum diffusion,
with the SGS terms contributing the remaining 94%. In the low Reynolds number
(Re = 104) runs, in which the turbulence is nearly resolved, the molecular viscosity
term contributed nearly 40% of the momentum diffusion.

In this paper, the Schmidt number is assumed to be infinite. This is representative
of fluids with large Schmidt numbers, such as salt water (for which Sc ≈ 700) in the
near and intermediate wake regimes. For such large Schmidt numbers the molecular
diffusion term in (2.2) is always much smaller than the divergence of the residual
density flux in the near and intermediate wake. Far enough downstream where the
eddy scales become very large the finite value of the Schmidt number may be
important, but in the calculations presented here we have neglected this effect.

2.2. Galilean approximation

Following Orszag & Pao (1974), a Galilean approximation is used to relate the
spatial development of the wake to the temporal evolution of the LES. In normalized
variables, let x1 = −t, where x1 is the distance downstream of the sphere in the wake
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and t is the corresponding time in the LES. Based on this Galilean approximation,
we further assume that

φ̂ =
1

T

∫ T

0

dtφ(t, x = Xo)⇐⇒ 1

L

∫ L

0

dxφ(t = To, x) = 〈φ〉, (2.10)

where φ is a physical quantity, the hat denotes time averaging, angle brackets denote
spatial averaging, L is the length of the LES computational domain in the axial
direction (see figure 1), T is the duration of time averaging, and Xo and To are
positions in space and time where the wake of the sphere and the LES correspond. A

tilde denotes the turbulent fluctuations, which are defined as φ̃ = φ− 〈φ〉. As shown
in figure 1, the wake of the sphere is modelled as a slab of fluid.

2.3. Initialization

The initial velocity field is decomposed into a mean disturbance and a fluctuating
disturbance. The magnitude and distribution of mean and fluctuating components are
specified based on the measurements of Bevilaqua & Lykoudis (1978). For the mean
flow along the track of the sphere

〈ū1〉 = ao exp

(
− r2

2r2
o

)
, (2.11)

where ao is the amplitude of the mean wake deficit normalized by the velocity, and
ro is the initial characteristic radius of the wake. The cross-stream components, 〈ū2〉
and 〈ū3〉, are initially set equal to zero. The initial r.m.s. velocity fluctuations are
approximated using the function√

〈˜̄ui ˜̄ui〉 = a1

(
1 +

r2

r2
o

)
exp

(
− r2

2r2
o

)
, (2.12)

where a1 is the initial amplitude of the r.m.s. velocity fluctuations. The fluctuating
velocity field is constructed from a realization of fully developed homogeneous
turbulence that is projected onto the r.m.s. velocity distribution, as is described
in more detail in Dommermuth et al. (1997). The r.m.s. fluctuations are initially
uncorrelated and the turbulent shear stresses are zero. As explained in § 3.1, an
iterative procedure is used to relax the wake to produce accurate distributions of the
turbulent shear stresses. We assume that the mean and fluctuating portions of the
density disturbance are initially zero.

2.4. Numerical algorithm

Equations (2.1)–(2.9) are discretized using second-order finite differences. A fully
staggered grid is used in the numerical simulations. Periodic boundary conditions are
used along the sides of the computational domain, and free-slip boundary conditions
are imposed at the top and bottom. A third-order Runge–Kutta scheme is used to
integrate the equations with respect to time. The numerical algorithms have been
implemented using high-performance Fortran (PGHPF) on a CRAY T3E. Additional
details and convergence studies of a similar numerical algorithm are described in
Dommermuth et al. (1997).

3. Results
The initial mean velocity disturbance and r.m.s. fluctuations are based on least-

squares fits to the laboratory measurements of Bevilaqua & Lykoudis (1978). Their
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experiments were for a towed sphere in a neutrally stratified fluid at a Reynolds
number Re = 104. The fits to the data were made at the cross-section of the wake
six diameters downstream of the sphere. For the mean flow, ao = 0.110 and ro = 0.50.
For the fluctuating portion of the flow, a1 = 0.045. Convergence is established using
two different grid resolutions corresponding to coarse (128 × 256 × 129 grid points)
and fine (256 × 512 × 257 grid points) simulations. For the coarse-grid simulations
we chose a computational domain that is 24D long, 24D wide, and 12D deep. For
the fine-grid simulations we chose a computational domain that is 12D long, 24D
wide, and 12D deep. This coarse-grid domain is long enough in the axial direction to
contain four pairs of pancake eddies, based on figure 3 of Spedding et al. (1996a),
and the fine-grid domain contains two pairs of pancake eddies. The fine-grid results
are presented here.

In order to investigate the effects of Reynolds number and stratification, simulations
were performed at Reynolds numbers of Re = 104 and 105 for Froude numbers of
Fr = 2 and∞. The same mean-flow and r.m.s. fluctuating velocity profiles are imposed
initially for all cases.

3.1. Wake relaxation

A relaxation procedure is used to produce the appropriate turbulent shear stress
profiles at the beginning of the calculation. During the relaxation procedure, the
mean and r.m.s. fluctuating velocity distributions of the flow are held fixed. The total
turbulent kinetic energy is also held fixed, but the spatial distributions of the turbulent
shear stresses are free to vary. Once the turbulent shear stresses have come to an
equilibrium distribution, the relaxation procedure is turned off and the numerical
simulation is initiated. A similar procedure is used by Orszag & Pao (1974) in their
numerical simulations of a self-propelled body.

The dissipation rate εt of the turbulent kinetic energy is

εt =

∫
V
ūi
∂ ˜̄uj ˜̄ui
∂xj

dV +

∫
V

˜̄u3
˜̄ρ

Fr2
dV +

∫
V

˜̄ui
Re

∂

∂xj

(
2µ ˜̄Sij

)
dV −

∫
V

˜̄ui
∂τ̃ij

∂xj
dV , (3.1)

where V is the volume of the fluid. The first integral is the production of turbulent
kinetic energy, the second integral is the energy radiated by internal waves, the third
integral is the energy dissipated due to viscous dissipation, and the fourth integral is
the energy dissipation associated with SGS interactions. In well-developed turbulent
flows, εt ≈ 0, and turbulent production balances turbulent dissipation.

The evolution of the turbulent production rate and the total dissipation rate during
this relaxation procedure is shown in figure 2 for Re = 104 and 105 for neutral
(Fr = ∞) stratification. The total dissipation rate is the sum of the last two integrals
on the right-hand side of (3.1). Initially the turbulent production is zero and the total
dissipation rate is too high. As time increases, the turbulent production increases and
the dissipation rate decreases. The numerical simulation is initiated when turbulent
production and dissipation become approximately constant with time, at t ≈ 30 in
both cases. With this procedure, turbulent shear stresses are properly determined at
the beginning of the calculation. Note that turbulent production and dissipation are
not in balance at this stage. Apparently, the turbulence in the wake is not self-similar
this near to the sphere. If the wake simulation had been initialized with the data
at t = 0 in figure 2, the turbulent fluctuations would have decayed too rapidly and
the mean portion of the flow would have decayed too slowly because the turbulent
dissipation would have been too high and the turbulent production would have been
too low. We can obtain a balance between turbulent production and dissipation if we
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Figure 2. The adjustment period for the turbulent flow for neutrally stratified fluid, (a) Re = 104

and (b) Re = 105 : ——— , turbulent production rate and – – – , total dissipation rate. The power
is normalized by U3D2.
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Figure 3. Initial and final turbulent kinetic energy spectra for neutrally stratified fluid: · · · · · · ,
Re = 104, t = 0; – – – , Re = 104, t = 902; — · — , Re = 105, t = 0; - - - - , Re = 105, t = 1007;
——— , K−5/3. The spectral energy density is normalized by U3D4 and K is the wavenumber
normalized by D−1.

allow the normal Reynolds stresses to adjust. In this case, we found that the radial
profiles for the r.m.s. fluctuating velocities became wider than was observed in the
experiments.

Figure 3 shows the spectra of turbulent kinetic energy at the beginning (labelled
t = 0 in the caption) and at the end of the simulations for Re = 104 and Re = 105,
both for Fr = ∞. The spectra are normalized such that area beneath them equals the
total turbulent kinetic energy integrated over the volume. For Re = 105, an extensive
inertial range has been established. For Re = 104, the tail of the spectrum falls off
more rapidly than for the high Reynolds number case, showing features of laminar
flow.

The initial r.m.s. velocities and shear stress (〈˜̄u1
˜̄ur〉), in which ur is the radial com-
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Figure 4. Initial conditions for (a) Re = 104 and (b) Re = 105: ——— , 〈˜̄u1
˜̄u1〉1/2; — · — , 〈˜̄u2

˜̄u2〉1/2;

· · · · · · , 〈˜̄u3
˜̄u3〉1/2; – – – , 〈˜̄u1

˜̄ur〉. r is the radial coordinate normalized by D. The scales for the r.m.s.
velocities are on the left-hand axis of each plot, and the scales for the shear stress are on the
right-hand axis.

ponent of velocity, are plotted in figure 4. Bevilaqua & Lykoudis (1978) report only
the total of the r.m.s. velocities. We have assumed that the energy is equipartitioned
among all three components and that all three components have the same axisymmet-
ric radial distribution. Note that the r.m.s. velocity profiles have a peak off the axial
axis and a local minimum at the axis. In the relaxation procedure, these profiles are
held fixed while the shear stress is allowed to adjust. The final shear stress profile is
shown in the figure to have a peak at the same location as the r.m.s. velocities. These
profiles are similar to those that are reported in Uberoi & Freymuth (1970). Alto-
gether, figures 3 and 4 provide enough information to duplicate the initial conditions
for the cases that are reported here.

3.2. Similarity

As outlined briefly in the introduction, Spedding (1997) divides the evolution of a tur-
bulent wake into three regimes that he identifies as the early (or near) wake, labelled
3D (for the three-dimensional, isotropic character of the wake and its turbulence), the
intermediate wake, labelled NEQ (for the non-equilibrium period when potential en-
ergy is partially converted back to kinetic energy of the mean and turbulent flow), and
the far (or late) wake, labelled Q2D (for its quasi-two-dimensional characteristics). The
duration of each of these regimes scales with N, which in our non-dimensionalization
can be written in terms of the time t∗ = tFr−1. Spedding summarizes the existing
laboratory studies for the towed-sphere wake and concludes that at time t∗I ≈ 2 the
wake leaves the 3D regime and enters the NEQ regime and at time t∗II ≈ 50 the wake
enters the Q2D regime. Bonnier et al. (2000) insert a collapse regime, where the mean
wake deficit actually increases with time, at the beginning of Spedding’s NEQ. This
collapse regime begins at t∗ ≈ 2 and ends at t∗ ≈ 7.

In the stratified simulations we present here, Fr = 2, so t∗ = 0.5t. Our simulations
are initiated with laboratory data from an Fr = ∞ experiment at t∗ = 3, just at the
beginning of the NEQ regime, in the collapse phase.

In a homogeneous fluid, the evolution of the mean and turbulent properties of the
wake of a sphere are associated with various similarity laws which can be deduced
from theory and have been verified by experiments. As reported in Spedding et al.



92 D. G. Dommermuth, J. W. Rottman, G. E. Innis and E. A. Novikov

10–1

10–2

10–3

u0

(a)

101 102 103

t

10–1

10–2

10–3

(b)

101 102 103

t

Figure 5. Centreline velocity deficit for 6 < t < 1000 for (a) Re = 104 and (b) Re = 105: - - - - ,
Fr = ∞; 4, Fr = ∞, fit to the data of Bevilaqua & Lykoudis (1978), figure 5a; · · · · · · , Fr = 2; +,
Fr = 2, fit to data of Spedding et al. (1996). The solid line represents t−2/3.

(1996a, b) and Bonnier et al. (1998), laboratory measurements show that the mean
and turbulent properties in the early and late wake of a sphere in a stratified fluid
obey the same similarity laws as the wake in a homogeneous fluid, although the peak
velocity deficit is up to an order of magnitude larger in the late wake of stratified
flows. The physical quantities that we discuss here include the amplitude of the mean-
wake deficit, the width and height of the wake, the mean and turbulent kinetic energy
and the potential energy.

3.2.1. Mean flow

During the NEQ period, the vertical fluctuations radiate internal waves (Spedding
1997). As a result, the production term associated with ˜̄u1

˜̄u3 decreases more rapidly
than the term associated with ˜̄u1

˜̄u2, and the wake spreads more rapidly in the
horizontal plane than in the vertical plane. This effect can be quantified by fitting a
Gaussian distribution of the following form to the mean velocity profile:

〈ū1〉 ≈ uo exp

(
−1

2

(
x2 − yo
ry

)2

− 1

2

(
x3 − zo
rz

)2
)
, (3.2)

where uo is the amplitude of the velocity deficit along the centreline, ry is a measure of
the width of the wake, and rz is the corresponding height; yo and zo are respectively
the centres of the wake along the x2- and x3-axes. The centres account for the
meandering of the wake. A least-squares fit of the numerical data is used to fit the
various coefficients.

Figures 5 and 6 respectively show the velocity amplitude and the length scales of the
wake. For comparison, non-stratified fluid measurements of Bevilaqua & Lykoudis
(1978) and the stratified fluid measurements of Spedding et al. (1996b), Bonnier et al.
(1998) and Spedding (2002) are included for Re = 104. As shown in figure 5(a, b) the
simulated uo for Fr = ∞ initially follows the expected power-law behaviour (t−2/3)
and compares well with the laboratory results, but at t ≈ 10 the simulations begin
to deviate from the experimental results, decaying less rapidly, so that by t ≈ 100
the simulated wake deficit is about twice that of the experiments. After t ≈ 100 the
simulated u0 returns to a t−2/3 behaviour, almost as if the simulated wake goes through
an adjustment period. Curiously, the Re = 105 simulations produce a slightly better
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Figure 6. Wake width, ry , and height, rz , for 6 < t < 1000 with (a) Re = 104 and (b) Re = 105:
– – – , ry for Fr = ∞; 4, fit to Fr = ∞ data of Bevilaqua & Lykoudis (1978), figure 5a; · · · · · · , ry
for Fr = 2; +, fit to ry data of Bonnier et al. (1998), figure 4 and Spedding et al. (1996b), figure 10;
— · — , rz for Fr = ∞; — — — , rz for Fr = 2; ©, rz measured by Spedding (2002), figure 9a.
The solid line represents t1/3.

fit to the laboratory experiments. We attribute these discrepancies to the coefficients
in the SGS model being too large, as noted previously.

When Fr = 2, the amplitude of the velocity deficit initially decays as in a non-
stratified fluid, but starting at t ≈ 10 it begins to decay less rapidly, which is evident
in both the numerical and experimental results. At later times (t > 120), the numerical
results for a stratified fluid show the same self-similar behaviour as a fluid that is not
stratified. Furthermore, the initial onset of self-similarity is insensitive to Reynolds
number. For t > 120 the simulated wake deficits are a very good match to the
experimental measurements.

Figure 6(a, b) shows the horizontal, ry , and vertical, rz , length scales of the wake.
When the fluid is not stratified laboratory experiments show that both length scales
tend to grow like (t1/3). In the simulations without stratification both length scales
initially follow the t1/3 behaviour. At the lower value of Re, as seen in figure 6(a), both
length scales start to deviate from this behaviour at t ≈ 10, increasing less rapidly
than in the laboratory experiments. The simulations appear to return to the observed
growth rates after t ≈ 100, yet the wake width and height are substantially less than is
observed in the experiments by this time. Again, as was found for the velocity deficit,
the higher-Re simulations seem to be a better fit to the laboratory data.

In the simulations with stratification, the simulated wake initially spreads isotropi-
cally at the non-stratified rate, but at t ≈ 10 the width of the wake begins to increase
less rapidly and the height of the wake stops increasing, even slightly decreasing for a
while. At t ≈ 30 the width of the simulated wake begins to increase at a higher rate,
matching the t1/3 behaviour of the non-stratified wake, and surpassing the simulated
non-stratified wake width at t ≈ 50. The height of the simulated wake stays fairly
constant until t ≈ 120, when it starts to increase slowly. The agreement with labora-
tory data for the stratified case is quite good for ry in the late wake and reasonably
good for rz in the intermediate wake, but the laboratory measurements show the
wake height starting to increase sooner and at a substantially faster rate than in the
simulations. Comparing figures 6(a) and 6(b), it can be seen that the growth of the
wake in a stratified fluid changes somewhat with Reynolds number. In particular, the
vertical spreading of the wake is less and the horizontal spreading slightly greater for
the higher Reynolds number.
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Figure 7. Kinetic energy for 6 < t < 1000 for (a) Re = 104 and (b) Re = 105 : · · · · · · , fluctuations
for Fr = ∞; — · — , mean flow for Fr = ∞; - - - - , fluctuations for Fr = 2; — — — , mean flow
for Fr = 2. The solid line represents t−2/3. The energy is normalized by U2D3.

3.2.2. Energetics

Based on laboratory measurements of the wakes of spheres in non-stratified fluids,
volume integrals of both the mean and of the turbulent kinetic energy decay approx-
imately as t−2/3, which is consistent with the mean and r.m.s. velocities decaying as
t−2/3 and both the horizontal and vertical length scales of the wake increasing as t1/3.
Spedding et al. (1996a, b) found the same self-similar behaviour for wakes of spheres
in stratified fluids sufficiently far downstream.

In figure 7 the kinetic energy in the mean portion of the flow integrated over
the volume of fluid (

∫
V dV 〈ūi〉〈ūi〉) and the turbulent kinetic energy (

∫
V dV ˜̄ui˜̄ui) are

plotted versus time for both the non-stratified and stratified cases for (a) Re = 104

and (b) Re = 105. The energy in the mean flow for the non-stratified cases decays
from the beginning as t−2/3, as expected. The turbulent kinetic energy for Re = 105

with no stratification is also self-similar for t > 30. This is consistent with Bevilaqua
& Lykoudis (1978) who had observed that turbulence quantities tend to take longer
than mean-flow quantities to reach self-similarity.

The energy in the mean flow for the stratified cases shows a self-similar behaviour
for t > 120, decaying as t−2/3 for Re = 104, but slightly more slowly for Re = 105.
The lower Reynolds number result is consistent with Spedding et al.’s (1996a, b)
experimental observations. Also, as noted by Spedding et al. (1996a) and confirmed
by the present numerical results, the duration of the non-equilibrium period for the
mean flow seems to be insensitive to Reynolds number. For the stratified fluids,
the oscillations in the turbulent kinetic energy are associated with the generation of
internal waves. During the initial stages, the vertical fluctuations in velocity radiate
internal waves. There is a decrease in the vertical component of kinetic energy and
a corresponding increase in the potential energy associated with the generation of
internal waves. Note that the LES is initialized such that the internal wave field is
not in adjustment, which may also contribute to this effect.

For each Reynolds number, the turbulent kinetic energy initially decreases by more
for the stratified fluid than the non-stratified fluid. Conversely, the mean-flow kinetic
energy initially increases by more for the stratified fluid than the non-stratified fluid.
As internal waves are radiated, the turbulent production term associated with ˜̄u1

˜̄u3

decreases more rapidly than it would in a non-stratified fluid because the vertical
fluctuations ˜̄u3 are reduced as a result of the radiation of internal waves. The turbulent
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Figure 8. Total potential and kinetic energies for 6 < t < 1000 for (a) Re = 104 and (b) Re = 105.
The results for non-stratified fluids (Fr = ∞) are: · · · · · · , turbulent kinetic energy Ẽ; — · — ,
total energy (E). The results for stratified fluids (Fr = 2) are: - - - - , turbulent kinetic energy plus
potential energy Ẽ; — — — , total energy (E). The solid line represents t−2/3. The energy is
normalized by U2D3.

production is reduced and less energy is drained from the mean flow into turbulence.
A similar effect is observed by Sarkar (2000) in his numerical simulations of turbulent
shear flows in a stratified fluid.

As noted by Spedding (1997), energy is redistributed between the kinetic energy
and the potential energy and also between the mean and the fluctuating portions of
the flow. Figure 8 shows the total energy (E), which includes the turbulent kinetic
energy, the kinetic energy in the mean portion of the flow, and the turbulent potential
energy ((1/Fr2)

∫ t
0

dτ
∫
V dV ˜̄ρ˜̄u3). The potential energy in the mean portion of the flow

is two orders of magnitude less than the potential energy due to fluctuating quantities.
Figure 8 also shows the total energy in the fluctuating portion of the flow (Ẽ), which
includes the turbulent kinetic energy and the turbulent potential energy. The stratified
and non-stratified fluids establish self-similarity for both E and Ẽ. The results for both
Reynolds numbers show a tendency in the far wake for the energy in the stratified
fluid to be higher than in the non-stratified fluid. This effect may be attributed to the
generation of compact and energetic vortex structures in the stratified late wake as
well as the presence of internal waves.

Figure 9(a, b) shows how the energy in the fluctuating portion of the flow is dis-
tributed between kinetic and potential energies. The vertical component of turbulent
kinetic energy (

∫
V dV ˜̄u3

˜̄u3) is dominated by the radiation of internal waves, which
also manifests itself in the plot of potential energy. Note that the potential energy is
initially zero because of the way the initial conditions are prescribed. Aside from a
slight difference in the decay rate, the magnitude and phase of the radiated energy are
not sensitive to either the Reynolds number or the initial phase of the velocity field.
The oscillations in the kinetic and potential energies occur at twice the normalized
buoyancy frequency, where the normalized buoyancy frequency is Fr−1. The period
of the oscillations is T = πFr . Riley, Metcalfe & Weissman (1981) observe a similar
effect in their direct numerical simulations of homogeneous turbulence in stratified
fluids.

Except for an initial dip, the horizontal component of the turbulent kinetic energy
(
∫
V dV (˜̄u1

˜̄u1 + ˜̄u2
˜̄u2)) is not influenced by the generation of internal waves. As shown

in figure 9, there is a corresponding initial rise in the sum of the vertical component
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Figure 9. Distribution of energy in the fluctuating portion of the flow for 6 < t < 1000 for (a)
Re = 104 and (b) Re = 105. The curves are labelled as follows: — · — , vertical component of
turbulent kinetic energy; · · · · · · , turbulent potential energy; — — — , vertical component of
turbulent kinetic energy plus turbulent potential energy; - - - - , horizontal component of turbulent
kinetic energy. The solid line represents t−2/3. The energy is normalized by U2D3.

of turbulent kinetic energy plus potential energy. In the NEQ regime (10 < t < 120)
the vertical component of the turbulent kinetic energy decays more rapidly than the
horizontal component, but later in the Q2D regime the two components decay at
a comparable rate, which has also been observed by Sarkar (2000). This effect may
be attributed to the coupling that exists among the velocity components through the
pressure gradient term in the momentum equations.

3.3. The formation of pancake eddies

Figures 10 and 11 show time series of the vertical component of vorticity in the
horizontal plane through the wake centreline (x3 = 0) for respectively Re = 104 and
Re = 105. Part (a) of each figure illustrates the results for the non-stratified fluid
(Fr = ∞), and part (b) shows the corresponding results for a stratified fluid (Fr = 2).
In this grey-scale figure, white represents positive vorticity with magnitude ωz = 4
and black negative vorticity with ωz = −4. Each frame has the dimensions 24D in
both the cross-stream and upstream (to the right) directions. Note that the flow
along the streamwise direction (x1) has been periodically extended one additional
computational domain length. The centres of each frame are located at (from left to
right and top to bottom) t ≈ 6, 14, 30, 46, 62, 86, 134, 166, 198, 262, 326, 390, 454,
550, 678 and 838. The vorticity in each frame is scaled by the distance downstream,
which is the expected similarity behaviour.

Comparing figure 10(a) with figure 11(a) shows that the higher-Reynolds-number
case has finer structure than the lower-Reynolds-number case. For the stratified cases,
coherent structures, in the form of nearly circular vortex patches, begin to appear
at t ≈ 100. This corresponds to the end of the NEQ regime, when the mean kinetic
energy begins to decay at the late-wake self-similar rate. Note that instabilities are
evident almost immediately. Further downstream, the size of these patches of vorticity
grows and the number of patches in a frame very slowly decreases. For Re = 104,
there are roughly four vortex pairs in each frame for t > 200. The number and shape
of the vortex pairs compares well with the experimental results of Spedding et al.
(1996a).

To describe the formation of the pancake eddies Spedding et al. (1996a) define
a Strouhal number St ≡ D/λx based on the spacing in the axial direction between
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(a)

(b)

Figure 10. A time history of the vertical component of vorticity ωz on the horizontal plane (x3 = 0)
through the centre of the wake, for the case with Re = 104: (a) Fr = ∞ and (b) Fr = 2. The images
are at the times, from left to right, top to bottom: t ≈ 6, 14, 30, 46, 62, 86, 134, 166, 198, 262, 326,
390, 454, 550, 678 and 838.
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(a)

(b)

Figure 11. A time history of the vertical component of vorticity ωz on the horizontal plane (x3 = 0)
through the centre of the wake, for the case with Re = 105: (a) Fr = ∞ and (b) Fr = 2. The images
are at the times, from left to right, top to bottom: t ≈ 6, 14, 30, 46, 62, 86, 134, 166, 198, 262, 326,
390, 454, 550, 678 and 838.
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the vortex cores, λx. For Fr = 2, Spedding et al. (1996a) measure a Strouhal number
St ≈ 0.173 in the range 50 6 t 6 125. The wavelength that is associated with this
Strouhal number roughly corresponds to four vortex pairs per frame in figure 10(b),
which is observed when t > 200. We conjecture that large-scale pancake eddies are
established earlier in Spedding et al.’s (1996a) laboratory experiments because our
numerical simulations are initialized using a wake relaxation procedure that is used to
establish self-similarity. As a result, the initial spectrum of our numerical simulation is
probably more broad than the laboratory measurements. This speculation is supported
by comparing Spedding et al.’s (1996a) figure 3 to our figure 10(b), which shows
that finer structures are initially present in the numerical simulations that are not
visible in the laboratory experiments. Spiral-vortex instabilities appear to promote the
formation of large pancake eddies in the near wake, but the results of our numerical
simulations indicate that spiral-vortex instabilities are not necessary to form pancake
eddies. In fact, our numerical simulations indicate that pancake eddies appear to
form over a very broad range of wavenumbers. These numerical results are important
because they illustrate that pancake eddies can form without the flow being ‘seeded’
with some initial structure. In the experimental results of Spedding et al. (1996a, b),
Spedding (1997), and Chomaz et al. (1993a) the late wake preserves some information
about structures in near wake, such as the structure of the helical instability mode.
We conclude from a comparison of the numerical simulations and the experiments
that any structures present in the near wake can have some affect on the far-wake
structure, but that they are not essential for the formation of far-wake eddies. This
conclusion is consistent with the conclusions described in Bonnier et al. (1998, 2000)
based on experiments using both laminar and turbulent wakes.

For Re = 105, vortex merging is more pervasive and as a result there are fewer
vortex pairs evident in the stratified-flow simulation than are present at the lower
Reynolds number. For the non-stratified fluid (see figure 11a), there are two bulges
in the contours of the vorticity. (Note that there is really only one bulge in the com-
putational domain because the data in the figures have been periodically extended.)
These bulges may have contributed to the dissimilar behaviour that is observed in
the mean velocity profiles that are plotted in figures 5(b) and 6(b). The positions of
the bulges in the non-stratified results (see figure 11a) and the positions of the largest
pancake eddies in the stratified results (see figure 11b) roughly correspond. Over the
duration of the simulation, the small-scale features that are observed in the bulges of
the non-stratified simulation appear to merge to form the large-scale structures that
are observed toward the end of the stratified simulation.

4. Conclusions
We have presented some preliminary results from using an LES scheme to compute

the late wake of a sphere towed at constant speed through a non-stratified and a
uniformly stratified fluid. For each case, we have obtained results corresponding to
two Reynolds numbers, one representative of laboratory scale and the other much
higher.

An important aspect of the simulations is the use of a relaxation procedure to
adjust the initial turbulence fields so that the normal and shear turbulent stresses are
properly correlated and the turbulent production and dissipation are in equilibrium.
Using this relaxation procedure to determine the proper turbulent initial conditions
produces wakes with similarity behaviour that matches what is observed in the
experiments. This ability to match the similarity behaviour of the experiments is a
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good indication that the subgrid-scale model in this LES scheme is suitably modelling
the subgrid-scale turbulence.

The numerical study of Gourlay et al. (2001) involves a spectral DNS of a drag
wake with Re = 104 and Fr = 5 and ∞, and focuses on the far-field properties of the
wake. As in the present study, they use a Galilean approximation to relate the spatial
evolution of the wake to the temporal evolution of the flow in the simulation domain.
The turbulent field is initialized using random phases, and contrary to the present
study, a relaxation procedure is not used to establish the turbulent shear stresses and
bring the initial turbulent production and dissipation into equilibrium. Nevertheless,
Gourlay et al.’s (2001) results for the properties of the far-field wake are similar to
those obtained in the present study. We have found that achieving the appropriate
initial turbulence properties of the wake is essential for accurately simulating the
near- to intermediate-field wake, but is not important if only the far-field wake is of
interest.

We have found in the stratified case, consistent with the conclusions from previous
laboratory and numerical studies, that the wake flow does not need to be ‘seeded’ with
some coherent structure in order to develop well-ordered ‘pancake eddies’ in the far
field, although the near-field wake structure may play a role in how the flow evolves
towards its late-wake structure. This is true for both Reynolds numbers. In fact, most
aspects of the wake appear to be insensitive to the Reynolds number. In general the
wake has finer structure at the higher Reynolds number, and evolves differently than
it does at lower Reynolds number, but the far-field result is similar.
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